Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription.

نویسندگان

  • V Swaminathan
  • A Hari Kishore
  • K K Febitha
  • Tapas K Kundu
چکیده

Histone chaperones are a group of proteins that aid in the dynamic chromatin organization during different cellular processes. Here, we report that the human histone chaperone nucleophosmin interacts with the core histones H3, H2B, and H4 but that this histone interaction is not sufficient to confer the chaperone activity. Significantly, nucleophosmin enhances the acetylation-dependent chromatin transcription and it becomes acetylated both in vitro and in vivo. Acetylation of nucleophosmin and the core histones was found to be essential for the enhancement of chromatin transcription. The acetylated NPM1 not only shows an increased affinity toward acetylated histones but also shows enhanced histone transfer ability. Presumably, nucleophosmin disrupts the nucleosomal structure in an acetylation-dependent manner, resulting in the transcriptional activation. These results establish nucleophosmin (NPM1) as a human histone chaperone that becomes acetylated, resulting in the enhancement of chromatin transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone acetylation-independent transcription stimulation by a histone chaperone

Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical properties have been well studied. By performing microarray analyses, we found that TAF-I stimula...

متن کامل

Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.

We demonstrate using a dinucleosome template that acetylation of the core histones enhances transcription by RNA polymerase III. This effect is not dependent on an increased mobility of the core histone octamer with respect to DNA sequence. When linker histone is subsequently bound, we find both a reduction in nucleosome mobility and a repression of transcription. These effects of linker histon...

متن کامل

The coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter.

The human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma. The multifunctional virally encoded oncoprotein Tax is responsible for malignant transformation and potent activation of HTLV-1 transcription. Tax, in complex with phosphorylated cAMP response element binding protein (pCREB), strongly recruits the cellular coactivators CREB binding protein ...

متن کامل

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription.

The human ISWI-containing factor RSF (remodeling and spacing factor) was found to mediate nucleosome deposition and, in the presence of ATP, generate regularly spaced nucleosome arrays. Using this system, recombinant chromatin was reconstituted with bacterially produced histones. Acetylation of the histone tails was found to play an important role in establishing regularly spaced nucleosome arr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 2005